
  

 



  

Language Perfect



  

Obligatory comment

Comparing languages/technologies leads to 
religious arguments:

“My language is better than yours!”

Q:  So who's right?

A:  Unbiased metrics: speed, brevity, etc.



  

What's a good language?

Good language:
  Does what we say (human → machine)

  Easy to write (human productivity)

  Easy to read (among humans)

Some languages are better than others along these dimensions.

They make you more productive,

and they're more maintainable.



  

Is there really a difference?

Most programming language have:
Loops: for, while ...
Conditions: if, else ...
Function calls:  f(x)

Some have more libraries & built-in functions

But this is not a “library size” contest

Key:  which language requires less “fluff”?



  

Is there a “perfect” language

   In the minimalist sense:

The code does what you say

         With nothing beyond the minimal,
         essential syntax to achieve the goal



  

Wikipedia: boilerplate-code



  

comparative linguistics



  

Example
“Print the first N squares: 1, 4, 9, 16, 25, ...”

Easy to state & understand
Has some iteration/loop in it
Generic: gets a parameter, adjust result to it
Does some IO

Inspiration: a blog post by Steve Yegge 



  

Java

This version is too long to fit on this page

So lets jump to a URL instead:

      http://sites.google.com/site/steveyegge2/lisp-wins

http://sites.google.com/site/steveyegge2/lisp-wins


  

C#

Thanks to Peter

         int[] v = { 1, 2, 3, 4, 5 };                                         

           var squares = v.Select(x => x * x);                                  
           foreach (var x in squares)                                           
                   Console.Write(x.ToString() + " ");

 Much more elegant, but can we do better?          
        



  

Perl & python

Credit: little bro.

    perl:              print join " ", map {$_ * $_} 1..5               
                  

      python:     print map(lambda n: n*n, range(1, 6))   
                                               
           

Semi pure/functional (like LISP), getting there...

Quiz:  the above aren't equivalent.  How so?                  



  

R

cat( (1:5) ^ 2 )
                                                                                  
           

 nirvana



  

Iteration + selection

One of the most common/universal programming constructs:

Select array subset based on some condition

     C, C++, C#, Java, Fortran, … (all procedural languages) :

                       for each element in array[]

                             If (condition on element is true)

                                      do something with element

     SQL:       select (element) from table where (condition) ...



  

R:  iteration + selection done right

Select array subset based on some condition

array_name[logical_condition]

  
Example:      Age[Age >= 7.5]

nirvana



  

R:  array[other_array]

Make all “obvious” things implicit

     If object is an array  → iterate over it
 
     [index] is subset selection
          -- Ranges & subsets       Scores[west_coast_teams]
          -- Boolean conditions     Age[Age > 7.5]

With no 'if's, 'for's, iterators, no fluff remains
Programs are typically ~10 times shorter and clearer



  

Back to our “toy” program

print natural squares up to N:

cat( (1:5) ^ 2 )
                                                                                  
           

 Way too trivial?
What if I want, say, a chart of the squares?



  

But what if I want a chart?

just replace 'cat' with 'plot':

plot( (1:5) ^ 2 )
                                                                                  
           

 nirvana



  

“what if I want a …” demo

          

- 7 instead of 5
- data-points as cute circles
- radius growing as N
- area → as square(N)
- title and axis labels
- a grid
- fancy concentric circles
- some filled, some hollow
- a dashed line over centers
- a “Wow!!!”

All wishes come true
In just a few lines of R code
(See demo.R)



  

from language to platform

        
R is pure-functional, generic, and extensible

functions are generic/polymorphic and w/o side-
effects on callers

It was a small language when it started, but it was 
cleanly extensible

Now it has over 3000 libraries and it keeps growing 

Without breaking under the strain/complexity of 
additions



  

R is a factory

        
Give a man a fish – he will eat for a day

Teach a man how to fish – he can eat his whole life

Give a man tools – he can make a fishing pole...

                                                                           (Guy L Steele Jr.)



  

I feel I found my “almost perfect”
language for now

        

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

